JB/T 6881-93 标准 泵可靠性测定试验

本标准主要概述了泵可靠性测定试验的主题内容和适用范围、引用标准、定义、可靠性指标的选择、抽样规定、故障判断、受试产品的要求、试验程序、参数估计和分布假设、试验方案、数据处理、计算实例。

- 1、泵可靠性测定试验:主题内容与适用范围
- 2、泵可靠性测定试验:引用标准
- 3、可靠性指标及定义
- 4、可靠性指标的选择
- 5、抽样规定
- 6、故障判据
- 7、受试产品的要求
- 8、试验程序
- 9、参数估计和分布假设
- 10、试验方案
- 11、数据处理
- 12、计算实例

1、主题内容与适用范围

本章节主要描述了泵测定试验的主题内容与适用范围。

本标准规定了泵可靠性测定试验的指标选择、抽样规定、故障判据、试验程序以及试验数据处理方法等。

可靠性测定试验是测定泵可靠性特征值的试验。目的是确定泵实际达到的可靠性水平,以便 把这些资料记入技术文件。

本标准适用于需要了解可靠性指标量值的泵产品,并对试验室和现场两种可靠性试验方式均适用。

2、引用标准

本章节主要描述泵可靠性测定试验的引用标准。

GB 3187 可靠性基本名词术语及定义。

GB 5080.4 设备可靠性试验可靠性测定试验的点估计和区间估计方法(指数分布)。

3、可靠性指标及定义

本章节描述了泵可靠性测定试验的指标及定义。

- 3.1 平均寿命 (mean life)
- a. 平均无故障工作时间(mean time between failures MTBF)

泵运行中相邻两故障间工作时间的均值。

b. 失效前平均工作时间(mean time to failure — MTTF)

泵从开始运行到发生不便于修理的故障时工作时间的均值。 c.平均检修寿命 (mean overhaul life — MOL)

泵运行到需要解体检查修理时工作时间的均值。

3.2 平均修复时间(mean time to repair — MTTR)

泵从发现故障到恢复规定功能所需时间的均值。

3.3 有效度 (availability—义(/))

泵在规定的时间区间内具有或维持其规定功能的概率。

3.4 可靠度 (reliability —/; (1))

栗在规定的条件下和规定时间内,完成规定功能的概率 t 上述各项指标的观测值求法按 GB 3187 中的规定。

4、可靠性指标的选择

本章节描述了泵可靠性测定试验的指标选择。

- 4.1 可以修复的泵产品可靠性指标应选用平均无故障工作时间(MTBF)和平均检修荞命(MOLh)。
- 4.2 某些原则上虽然可修复但是进行修理很不方便或很困难甚至是不可能修复的栗,可以当成不可修 复产品处理(如深井泵和某些船用泵等),其可靠性指标选用失效前平均工作时间(MTTF)。
- 4.3 当有条件收集到泵维修数据的情况时*除 4.1 条或 4.2 条外,可靠性指标可同时选用平均修复时间(MTTR)和有效度工程上习惯称有效度为可用率,当故障间隔时间和维修间隔时间均服从指数分布时,有效度为。
- 4.4 当考核泵的零、部件时(如叶轮、机械密封等),除选用以上指标外,可靠性指标还可选用可靠度(RU)。

5、抽样规定

本章节主要描述了泵可靠性测定试验的抽样规定。

- 5.1 抽样的目的是为了减少试验台量,节约费用,但必须保证样品的试验结果能够代表整批 泵的水平。
- 5.2 泵的可靠性测定试验用于下述情况:
- a. 研制的模型或样机;
- b. 批量生产。

总体必须在本质上是同一的,也就是说同一总体的栗是以相同的方法和稳定的工艺条件生产 装配的,以保证可靠性试验具有代表性。如果可以证明泵的可靠性水平与泵的规格无关, 方可将同型号不同规格的泵作为一个总体处理。 受试泵必须从所代表的总体中, 按随机方式一次计数抽样

- 5.3 现场可靠性试验应注意选点:
- a. 用户的使用条件应与设计说明条件一致;
- b. 尽量优先选择被考核产品使用量大的用户;
- c. 如选择多家用户,应注意考查具有相同或基本相同的使用条件.
- 5.4 试验室试验应抽取同年生产的同一规格型号的泵不少于 3 台。

现场试验应从同时期运行的同一规格型号的泵中抽样,样本量不少于5台,对于年产量超过150台的同种规格型号泵抽样量不少于15台。

- 5.5 对现场试验的泵产品,为尽可能多的暴露故障,样本量不一定要多,但需保证足够的试验时间,同时要保证受试泵的投运时间不应相差太大。
- 5.6 现场试验时,一般情况下应优先选择完全样本试验,即试验到每台抽样受试泵的检修寿命期为止。 对于平均检修寿命较长的泵(MOL>3 年),可选择不完全样本试验。

6、故障判据

本章节主要描述了泵可靠性测定试验的故障判断。

6.1 故障

凡是不能按订货数据单要求的运行工况完成其规定功能,或其性能指标劣化至允许范围以外的一 切现象就是故障。

6.2 表现形式

在额定扬程下流量达不到规定值或满足不了用户的使用值,不正常的外部泄漏、振动烈度大,润滑 不良、局部过热、不正常的频繁更换易损件等都属故障。

6.3 分类

I类故障——危及人身和设备安全,造成重大经济损失的故障如断抽,炸裂等。

- n 类故障——主要零、部件严重损坏,需解体检修的故障。如叶轮裂纹、更换机械密封和轴承等。
- m 类故障——泵功能下降,可用更换易损件和附带工具在较短时间内便于维修并容易排除的 故障。 如换填料等。
- w 类故障——不影响栗的功能和使用要求且无需停机而轻易排除的故障。如标牌脱落、轻微 泄漏等。

6.4 判据

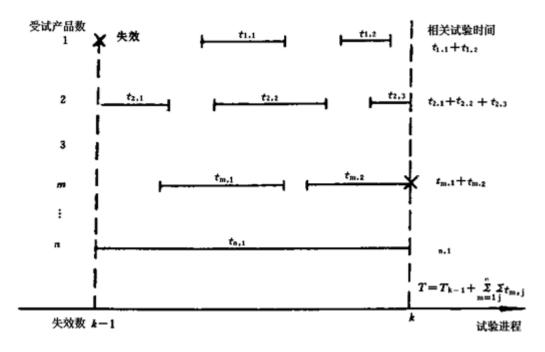
- 6.4.1 由于 I、n、in 类故障引起的非计划停机均判为一次故障。
- 6.4.2 有计划停机检修不计入故障次数,按计划更换易损件也不计入故障次数。
- 6.4.3 IV 类故障以及其他由于泵本机以外的原因引起的从属故障,如;仪表失灵、误操作等均需记录但不计人故障次数。
- 6.4.4 故障类别的判定应以最终造成后果的严重程度为依据。
- 6.4.5 由于各种泵的结构不同,同一名称的故瘅所致后果及排除的难易程度会有较大差别, 因此要根据具体情况确定故障类别 t
- 6.4.6 现场使用中如发现泵的若干个参数偏离了规定的使用范围,而且不能证明它们是同一个原因引起的,则每一个参数的偏离都认为是受试泵的一次故障,有几个原因就认为是几次故障,若是由同一原因引起,则认为是一次故障。

7、受试产品的要求

本章节描述泵可靠性测定试验对受试产品的要求。

- 7.1 受试产品应按第5章的规定抽样。
- 7.2 受试产品必须是检验通过的合格品,而且在完成性能参数试验之后应进行解体,只有当未发现零、 部件有什么不正常的痕迹时才允许进行可靠性试验。
- 7.3 可靠性试验可以在专门的试验台上进行,也可以在使用现场进行,但运行工况应在设计规定的工作范围内,运行环境应符合被试泵的使用说明文件的有关规定。
- 7.4 试验室试验应在规定工况下进行,并要配计时器,允许采用加速试验方法,但必须证明 所用方法不 改变失效模式和失效机理且加速系数足够准确。
- 7.5 在使用现场实际工作负荷下进行试验时, 其设备应具备下列条件:
- a. 可以测定泵的扬程、流量、功率,测定精度不要求太高,方法不限;
- b. 可以测量为判断泵的运转是否正常需测定的量,如轴承温度、外部泄漏量、某些部位的压力 或压力差等;
- c. 事故保护或监测装置齐备。
- 7.6 应对允许更换的部件和零件作出计划。

8、试验程序


本章节主要描述泵可靠性测定试验的程序。

8.1 试验记录

从给定的泵产品总体中,随机抽取规定数量的样品投入规定的试验过程,记录和逐次累积所有受试泵的相关试验时间、故障间隔时间和相关失效数并记入表 1 中。

8.2 相关试验时间

受试泵相关试验时间根据 GB 5080.4 的规定(见图 1)确定。

受试泵相关试验时间

表 1 泵的运行记录表

观测者姓名 选用可行性指标 试验方案 泵投运日期 受试泵顺序号 试验地点泵制造厂 泵名称 泵型号 泵工位号_ 泵开始试验日期 泵工作环境

泵的	字际工	況 n					泵	的故	瘅						泵的	I检修	Z.	
程H	1.5	N	转速 rt r/min	率 V	振动 mm/s	噪 声 dB	故瘅发生序号	故障发生曰期	相关试	弾 原 因	故 障 部	间隔	障 类 别	消除故瘅持续时间	工作量人小时	操作特点	耗用材料m	检修工具

量时状态 i, 已运行总时间 h, 故障发生次数情况;检修换件情况

注:

- 1)现场不易测量性能参数根据允许的使用情况估算。
- 2) 油、小配件等。
- 3) 机械磨损或引起故障的零件名称、折断、咬合、冲蚀、汽蚀等等。
- 4) 拆卸、更换零件、焊补等等。
- 5) 使用介质、温度、湿度。
- 8.3 累积相关试验时间的计算

当能测得每台受试泵的相关试验时间时,发生第*次失效的累积相关试验时间 r 为;式中 受试泵台数

——在受试泵中,序号为 m 的泵直到第;E 个失效发生时的相关试验时间; r——相关失效数(故障次数 h——第/个故障间隔时间。

在定时试验中,累积相关试验时间为:

式中——序号为W的受试产品直到规定点的试验时间

8.4 试验监测时间

整个试验期间生产厂都必须派专人观测相应的受试泵的相关试验时间,试验结束时观测相关失效数。

如果不能连续地进行监测,则必须规定监测之间的时间间隔,使之必须短到不致在本质上影响试验结果。

一般情况下,监测间隔应小于 0.2 其中叫为规定的可接受平均无故障工作时间。

8.5 试验记录

应给每一台受试泵建立一份试验记录,并按先后顺序在规定时间和每次失效之后进行数据记录。

- 8.5.1 由现场的一般维修人员按现场使用的维修表格收集数据。
- 8.5.2 由现场操作人员按表 1 收集数据。
- 8.5.3 由试验人员按监测间隔定期收集数据,记人表1。
- 8.5.4 凡是试验人员认为与试验有关的事件均应记录。

9、参数估计和分布假设

本章节描述了泵可靠性测定试验参数估计和分布假设。

9.1 一个点估计值是单个数值,用于表示一个统计参数的未知真值。例如平均无故障工作时间、有效度等。

- 9.2 置信限规定了在估计值周围的置信区间,这个区间以确定的概率(即置信度)包含着被估计参数的真值。泵应取单侧置信度7。
- 9.3 泵整机寿命在没有验证属于何种分布时,选用指数分布。零、部件寿命选用威布尔分布。 当已有足够数据可以拟合分布曲线时,以数据拟合的分布为准。

10、试验方案

本章节描述了泵可靠性测定试验的试验方案。

可靠性试验包括试验室和现场两种方式,可根据具体条件自选一种方式进行试验。

10.1 完全样本试验——试验进行到每台投试泵都到了检修寿命期为止。

10.2 不完全样本试验:

a. 定时截尾试验——试验进行到试前规定的试验时间7小时就停止的试验。

当样本量较大*尤其是试验室试验可以选用定时截尾试验方案

b. 定数截尾试验——试验进行到试前规定的失效数 r 就停止的试验。

当用户限制泵的故障发生次数时,可选用定数截尾试验方案。

11、数据处理

本章节描述了泵可靠性测定试验的相关数据处理。

11.1 可靠性试验的数据处理包括图分析和数值分析两种方法。对于小样本(U<20),应采用数值分析。

方法 I 对于大祥本(G>20),除采用数值分析方法以外还可采用图分析法.另外无论是大样本还是小样

本如果有计算机编程能力时,应采用随机截尾处理方法.

图分析法——利用各种概率纸(如正态、威布尔、对数正态概率纸)对可靠性试验所获得的数据

- a. 进行描点、估计分布参数和可靠性特征值的方法;
- b. 数值分析法——利用概率模型和统计模型进行可靠性指标估计的数学方法:
- c. 随机截尾法——对于不符合完全样本或不完全样本中定时或定数截尾试验方案,所获得的可 靠性试验数据(如产品中途退出试验或既有故障又有无故障的现场试验数据的情况)所采取的一种特殊处理方法。
- 11.2 通过试验得到的数据,按泵的型号规格和不同的环境条件区分各自母体,记入表 1 中。供整理的原始数据是:

试验泵的台数总故障数:

每台泵第£次故障的工作时间7;

故障间隔时间—累积相关试验时间

i=1

其中 7\和 TVi, 分别为第/次和第 1 次故障发生时已运行的总工作时间 D

11.3 指数分布——肖泵产品的寿命服从指数分布时,得到 MTBF 指标后,就可相应得到其他指标(如夫效率;U 可靠度 K等)的点估算。

$$\overline{R}(t) = \exp(-\frac{t}{\overline{MTBF}}) \dots (5)$$

区间估计(置信度 y=i_ ← ○.7)。 定数截尾单侧置信下限:

$$\overline{\text{MTBF}} \geqslant \frac{2T}{X_{\alpha}^{2}(2r)}$$

$$\exp(\frac{-tX_{\alpha}^{2}(2r)}{2T}) \leqslant \overline{R}(t) \leqslant 1$$
(6)

定时截尾单侧置信下限:

$$\overline{\text{MTBF}} \geqslant \frac{2T}{\overline{X}_{\alpha}^{2}(2r+2)} \qquad (8)$$

$$\exp(\frac{-tX_{\alpha}^{2}(2r+2)}{2T}) \leqslant \overline{R}(t) \leqslant 1 \qquad (9)$$

其中 X4v)分布见表 2。

表 2 X1 分布表

0,99 0-98 0.95 0 • 90 0.80 0,70 0.50 0,30 0.20 0.10 0.05 0,02 ai 0 **0³157 0. 0 • 0. <	13. 816 16, 266 18* 467 20* 515 22.45	1 2 3 4 5
1 0³628 0²393 0158 0642 0. 148 0,455 1-074 1-642 2* 706 3,841 5*412 6. 635 2 0. 0. 0. 0*10 0, 0. 0201 0404 3 211 446 a 713 L386 2. 408 3.219 4. 605 5,991 7. 824 9.210 3 0. aiss 0. 0.58 1- 15 352 4 005 1.424 2,366 3. 665 4.642 6* 251 7- 815 9. 837 1L 345 4 0- 0. 0. 1-06 L 649 2.195 3-357 4-878 5* d8d 7-779 9. 488 11.66 12* 8 277 5 0. 0*75 1. 1.61 2. 3,000 4.351 6.064 7,289 9. 236 1L 13.38 15. 070 8 068 0-87 2. 145 0 343 3* 3* 3* 3* 3* 3* 3* 3* 3* 3* 3* 3* 3* 3	13. 816 16, 266 18* 467 20* 515 22.45	4
2 0. 0. 0201 0404 3 0. 0211 446 a 713 L386 2. 408 3.219 4. 605 5,991 7. 824 9.210 3 0. aiss 0. 0.58 1. 1.424 2,366 3. 665 4.642 6* 251 7- 815 9. 837 IL 345 4 0- 0. 0. 1-06 L 649 2.195 3-357 4-878 5* d8d 7-779 9. 488 11.66 12* 8 277 5 0. 0*75 1. 1.61 2. 3,000 4.351 6.064 7,289 9. 236 IL 13.38 15. 070 8 068 0-87 2. 145 0 343 3* 3* 3* 3* 3* 3* 3* 3* 3* 3* 3* 3* 3* 3	13. 816 16, 266 18* 467 20* 515 22.45 8	4
2 0201 0404 3 211 446 a 713 L386 2. 408 3.219 4. 605 5,991 7. 824 9.210 3 0. aiss 0. 0.58 1- 1.424 2,366 3. 665 4.642 6* 251 7- 815 9. 837 1L 345 352 4 005 3-357 4-878 5* d8d 7-779 9. 488 11.66 12* 297 429 711 4 3,000 4.351 6.064 7,289 9. 236 1L 13.38 15. 554 2 145 0 343 3* 10. 12. 15. 16.81 6 2 L134 L635 204 070 828 5-348 7,231 8.558 645 592 033 2 1. 2, 2.83 3. 6* 12* 14.06 16, 18* 7 239 1.564 167 3 822 4*671 346 8.383 9.803 017 7 622 <td>816 16, 266 18* 467 20* 515 22.45 8</td> <td>4</td>	816 16, 266 18* 467 20* 515 22.45 8	4
0201 0404 3 211 446	816 16, 266 18* 467 20* 515 22.45 8	4
115 352 4 005 345 4 0- 0. 0. 1-06 L 649 2.195 3-357 4-878 5* d8d 7-779 9. 488 11.66 12* 297 429 711 4 3,000 4.351 6.064 7,289 9. 236 1L 13.38 15. 554 2 145 0 343 343 10. 12. 15. 16.81 6 2 L134 L635 204 070 828 5-348 7,231 8.558 645 592 033 2 1. 2, 2.83 3. 6* 12* 14.06 16, 18* 7 239 1.564 167 3 822 4*671 346 8.383 9. 803 017 7 622 475 8 1-64 2.032 2,733 3,49 4S9 5. 527 7. 344 9. 524 11.030 362 507 8 090 2. 2. 3* 4.16 1	266 18* 467 20* 515 22.45 8	4
4 0- 0. 0. 1-06 L 649 2.195 3-357 4-878 5* d8d 7-779 9. 488 11.66 12* 297 429 711 4 3,000 4.351 6.064 7,289 9. 236 1L 13.38 15. 5 0. 0*75 1. 1.61 2. 3,000 4.351 6.064 7,289 9. 236 1L 13.38 15. 0-87 2. 3* 3* 10. 12. 15. 16.81 6 2 L134 L635 204 070 828 5-348 7,231 8.558 645 592 033 2 1. 2, 2.83 3. 6* 12* 14.06 16, 18* 7 239 1.564 167 3 822 4*671 346 8.383 9. 803 017 7 622 475 8 1-64 2.032 2,733 3,49 4S9 5. 527 7. 344 9. 524 11.030 16. 19. <td< td=""><td>18* 467 20* 515 22.45 8</td><td>5</td></td<>	18* 467 20* 515 22.45 8	5
297 429 711 4 8 277 5 0. 0*75 1. 1.61 2. 3,000 4.351 6.064 7,289 9. 236 1L 13.38 15. 554 2 145 0 343 343 10. 12. 15. 16.81 6 2 L134 L635 204 070 828 5-348 7,231 8.558 645 592 033 2 1. 2, 2.83 3. 6* 12* 14.06 16, 18* 7 239 1.564 167 3 822 4*671 346 8.383 9. 803 017 7 622 475 8 1-64 2.032 2,733 3,49 4S9 5. 527 7. 344 9. 524 11.030 13. 15* 18-16 20, 2. 2. 3* 4.16 10. 12. 16. 19. 21.66	467 20* 515 22.45 8	5
5 0. 0*75 1. 1.61 2. 3,000 4.351 6.064 7,289 9. 236 1L 13.38 15. 554 2 145 0 343 343 10. 12. 15. 16.81 0-87 2. 3* 3* 10. 12. 15. 16.81 6 2 L134 L635 204 070 828 5-348 7,231 8.558 645 592 033 2 1. 2, 2.83 3. 6* 12* 14.06 16, 18* 7 239 1.564 167 3 822 4*671 346 8.383 9. 803 017 7 622 475 8 1-64 2.032 2,733 3,49 4S9 5. 527 7. 344 9. 524 11.030 13. 15* 18-16 20, 8 6 2. 3* 4.16 10. 12. 16. 19. 21.66	20* 515 22.45 8	
554 2 145 0 343 070 8 068 0-87 2 3* 3* 10. 12. 15. 16.81 6 2 L134 L635 204 070 828 5-348 7,231 8.558 645 592 033 2 1. 2 2.83 3. 6* 12* 14.06 16, 18* 7 239 1.564 167 3 822 4*671 346 8.383 9. 803 017 7 622 475 8 1-64 2.032 2,733 3,49 4S9 5. 527 7. 344 9. 524 11.030 13. 15* 18-16 20, 90 2 2 3* 4.16 10. 12. 16. 19. 21.66	515 22.45 8	
0-87	22.45 8	6
6 2 L134 L635 204 070 828 5-348 7,231 8.558 645 592 033 2 1.	8	6
1. 2, 2.83 3. 6* 12* 14.06 16, 18* 7 239 1.564 167 3 822 4*671 346 8.383 9.803 017 7 622 475 8 1-64 2.032 2,733 0 4 5.527 7.344 9.524 11.030 13. 15* 18-16 20, 6 2.032 3* 4.16 10. 12. 16. 19. 21.66		6
7 239 1.564 167 3 822 4*671 346 8.383 9.803 017 7 622 475 8 1-64 2.032 2,733 3,49 4S9 5.527 7.344 9.524 11.030 13. 15* 18-16 20, 362 2. 2. 3* 4.16 10. 12. 16. 19. 21.66	24.32	
8 1-64 6 2.032 2,733 0 3,49 4S9 4 5. 527 7. 344 9. 524 11.030 362 507 8 090 2. 2. 3* 4.16 10. 12. 16. 19. 21.66	1 3	
8 6 2.032 2,733 0 4 5. 527 7. 344 9. 524 11.030 362 507 8 090 2. 2. 3* 4.16 10. 12. 16. 19. 21.66	2	7
6 0 4 362 507 8 090 2. 2. 3* 4.16 10. 12. 16. 19. 21.66	26,12	0
	5	8
S 088 532 325 8 5-380 6.393 S 343 656 242 14.684 919 679 6	27.	
	877	9
1 2.5583,059 3* 4. 6* 7*267 9. 342 IL781 I3* I5. I8. 21,16 23,	29.	1
0 940 865 179 442 987 307 1 209	588	0
1 3. 3. 4. 5,57 6. 10.34 14. 17, 19. 22.61 24*	31.	1
1 053 609 575 8 989 S. 148 1 12* m 631 275 675 8 725	264	1
1 3-57 4 178 5. 6. 7 807 0 034 H 240 14*01 15 812 18. 2L 24.05 26.	32.	1
7.807 9. 034 1L340 1 15.812 549 026 4 217	909	2
1 4.1074,765 5.892 7.04 8.634 9.926 12. 15.119 1\$, 19.812 22, 25. 27.	34.	1
3 2 340 985 362 472 688	528	3
1. 4. 5 15 571 7.79 9* 10, 13, 16. TO 151 21*06 23. 26. 29,14		1
H 660 5■遍 6,571 0 467 821 33S 222 IS. 151 4 685 873 1	36.12	-

1	5, 5	5. 7	'. 8	3* 10), 11	,72 14	l.	15	9*31	2	24.	28.	30.	37*	1
5	229	985 2	61 5	47 30	7 1	33	39 17	7,322 1	2	2.307	996	259	578	697	5
	0, 99	0. 98	0.95	0, 90	0.80	0,70	0. 50	0- 30	0, 20	0*10	0. 05	0,02	0,1	0• 001	
1						12.	15.33	18.41	20-	23.	26.	29*	32,	39.	1
6	5.812	6.614	7,962	9.312	1M52	624	8	8	465	542	296	633	000	252	6
1		7,	8,	10,	12.00	13,53	16.33	19.51	21,61	24.	27.	30.	33,	40.	1
7	6,408	255	672	085	2	1	8	1	5	769	587	995	409	790	7
1	7,015	7.	9.	10.86	12.	14-44	17*	20,	22,	25.	28.86	32.34	34.	42-31	1
8	7,013	906	390	5	857	0	338	601	760	989	9	6	805	2	8
1	7,633	8.567	10.	1L651	13.71	15,35	18.	2L689	23.	27,	30.14	33.	36.19	43,	1
9			117		6	2	338		900	204	4	687	1	820	9
2	g. 260	9-237	10,85	12.44	14.	16.26	19.	22.77	25*	2S,	31.	35.02	37.	4S*	2
0			1	3	578	6	337	5	038	412	410	0	560	31S	0
2			11,59	13.	15-44	17,18	20.33	23.85	26*17	29*	32.	36.	38*	46,	2
1	8-897	9.915	1	240	5	2	7	8	1	615	671	343	932	797	1
2	9*	10.	12*	14.04	16.31	18,10	21*33	24.	27-	30.81	33.	37.	40.	48.	2
2	542	600	338	1	4	1	7	939	301	3	924	659	289	268	2
2	10,	1L	13,09	14.84	17.18	19.02	22,	26.	28*	32,	35-17	38,	41.	49.	2
3	196	293	1	8	7	1	337	018	429	007	2	968	638	728	3
2	10.	11.	13.	15.	18*	19.	23.	27,	29.55	33.	36.	40,	42.	51*17	2
4	856	992	848	659	062	943	337	096	3	196	415	270	980	9	4
2	10*	12.69	14.61	16*47	18*	20,86	24.33	28.17	30*	34.38	37.	41.56	44.	S2.61	2
5	524	7	1	3	940	7	7	2	675	2	652	6	314	8	5
2		13.	15-	17,29	19.	21.79	25.	29,	31,	35.	38.	42,	45,	54.	2
6	198	409	379	2	820	2	336	246	795	563	885	856	642	052	6
2	12,	14*	16,	18.11	20.70	22,71	26.	30,31	32.	36*74	40.11	44.14	46<	55.	2
7	879	125	151	4	3	9	336	9	912	1	3		963	476	7
				18.93				31,39				45*41		56.	2
-	565	847				ļ				916	337	9	278		8
	14*25			19*76			28.				42.55		49.	58*	2
\vdash	6					577				087			388		9
3	14.95	16,	18.49	20,59	23*			33*53	36*	40,	43.	47.	50.	59*	3
0	3	306	3	9	364	503	336	0	250	256	773	962	892	703	0

实例:某型号泵的寿命认为是服从指数分布,抽取 5 台进行寿命试验,发生 10 次故障时,即停止试 验,其故障间隔时间分别为 330、480、905、1260、191(K2498、2704、3614、4100、53n h

a.试进行平均寿命的点估计和单侧置信区间估计:

按式(1): r = 乏=330+480+905 + 1260 + 1910 + 2498+2704 + 3614 + 4100 + 5311 = 23112 h

按式(3):
$$\overline{\text{MTBF}} = \frac{T}{r} = \frac{23112}{10} = 2311.2 \text{ h}$$
按式(4): $\overline{\lambda} = \frac{1}{\overline{\text{MTBF}}} = \frac{1}{2311.2} = 0.433 \times 10^{-3} \quad 1/\text{h}$
由 $\gamma = 0.7$, 则 $\alpha = 1 - 0.7 = 0.3$ 。 查表 2 得 $X^2(2r) = X^2(2 \times 10) = 22.775$
按式(6) 计算单侧置信下限: $\overline{\text{MTBF}} \geqslant \frac{2 \times 23112}{22.775} = 2029.6 \text{ h}$
b. 当泵运行 $t = 1500 \text{ h}$,试进行可靠度的点估计和单侧置信区间估计: 按式(5): $\overline{R}(1500) = \exp(\frac{-1500}{2311.2}) = 0.522$

- 11.4 正态分布和威布尔分布
- 11.4.1 根据原始数据用下列公式计算可靠性特征值:

平均无故障工作时间和平均检修寿命的观测值:

$$\overline{\text{MTBF}} = \frac{\sum_{i=1}^{s} t_i}{r} \qquad (10)$$

$$\overline{\text{MOL}} = \frac{\sum_{j=1}^{n} \text{OL}_j}{r} \qquad (11)$$

平均无故障工作时间和平均检修寿命的试验均方根差:

$$S_{T} = \sqrt{\frac{\sum_{i=1}^{r} (t_{i} - \overline{MTBF})^{2}}{r - 1}}$$

$$S_{L} = \sqrt{\frac{\sum_{j=1}^{n} (OL_{j} - \overline{MOL})^{2}}{n - 1}}$$
(12)

平均无故障工作时间和平均检修寿命的试验变异系数:

$$\nu_{\mathsf{T}} = \frac{14}{\mathsf{MTBF}} \qquad (14)$$

$$\nu_{\mathsf{L}} = \frac{S_{\mathsf{L}}}{\mathsf{MOL}} \qquad (15)$$

11.4.2 根据变异系数的不同,分别采用正态分布(v<0.35 时)或威布尔分布35 时 h 11.4.3 按以下公式计算泵的平均无故障工作时间和平均检修寿命。 采用正态分布时:

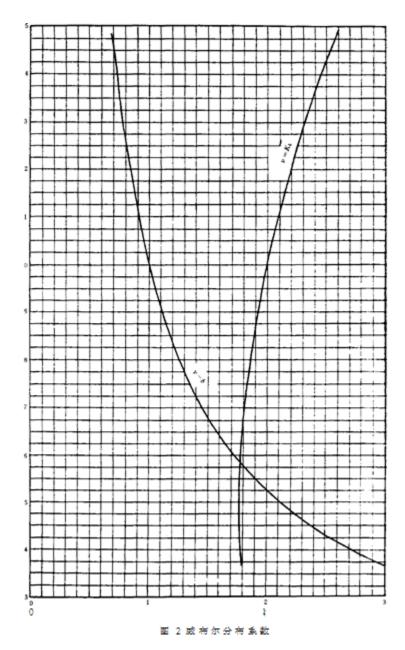
$$\overline{\text{MTBF}} = \overline{\text{MTBF}} - \frac{t_a}{\sqrt{r}} S_{\mathsf{T}} \qquad (16)$$

$$\overline{\text{MOL}} = \overline{\text{MOL}} - \frac{t_a}{\sqrt{n}} S_{\mathsf{L}} \qquad (17)$$

-

式中: $\frac{t_a}{\sqrt{r}}$ 和 $\frac{t_a}{\sqrt{n}}$ 由表 3 中选取。 采用威布尔分布时:

式中:r3 由表 3 中选取与 6 值由表 4 或图 2 中选取:


$$\overline{\text{MTBF}} = K_b \sqrt[b]{\frac{r_3}{r} \sum_{i=1}^{r} t_i^b} \qquad \cdots$$

$$\overline{\text{MOL}} = K_b \sqrt[b]{\frac{r_3}{n} \sum_{j=1}^{n} \text{OL}_j^b} \qquad \cdots$$

n			Ι "	ta	<u> </u>
("或广>	V n		或疒)) 3
3	0.6125	0.70	15	0. 224	0* 83
4	0. 489	0. 73	16	0,217	0.83
5	0. 421	0.75	17	0*210	0. 84
6	0• 376	0.76	18	0, 203	0. 84
7	0,342	0.77	19	0.198	0. 85
8	0.317	0.78	20	0. 193	0* 85
9	0.296	0*79	21	0, 187	0* 85
10	0. 279	0. 80	22	0. 182	0. 85
11	0,265	0,80	23	0-178	0. 86
12	0*253	0,81	24	0, 174	0. 86
13	0* 242	0*81	25	0-171	0-S6
14	0. 232	0* 82			

表 4 威布尔分布系数

V	b	K_{h}	р	b	K,
0. 365	3.0	0. Sd3	0, 837	1. 2	0, 941
0.420	2*5	0. 887	0.910	1, 1	0. 965
0.444	2,4	0. 887	LOO	1.0	1-0
0*461	2-3	0. 886	L 11	0,9	1.05
0.480	2.2	0. 886	L26	0.8	L 13
0.498	2A	0, 886	L46	0•?	L27
0- 523	2.0	0* 086	1.74	0*6	1,50
0. 547	1,9	0. 887	2. 24	0,5	2,0
0,575	L8	0, 889	3* 14	0.4	3, 32
0* 605	1, 7	0*892	5* 29	0.3	8. 86
0. 640	L 6	0, 897	IS. 83	0-2	120

11.4.4 计算平均修复时间的方法与 1L 1, 11.4, 2 和 4.3 条的规定类同,只是泵的修复时间包括

故障诊断、修理准备及修理实施时间之和*

11.4.5 当已知平均修复时间后,有效度 A(r)值就可以按观测值公式或根据参数分布规律求得。

11.4.6 可靠度指标可按式(5)、式(7)、式(9)或用图估法求得,

11.4.7 通过以上计算得到的可靠性指标,记入技术文件时应圆整成整数 a

平均无故瘅工作时间和平均检修寿命以及失效前平均工作时间和平均修复时间由最接近的 R级数系(100、120、160、200、250、320、400、500、630、800、1000)中选取。

11.4.8 有效度和可靠度由最接近的 R 40 级数系 (0, 5,0. 53,0, 56,0• 60,0* 63, 0. 67,0. 71*0. 75,0. 80, 0. 85,0. 90,0, 95)中选取^

11.5 试验报告

试验报告必须完整到足以为最后评定产品提供可靠的依据,一般应包括下列内容:

- a. 试验大纲,包括试验方案、试验计划、试验仪器、抽样规定等;
- b. 原始数据记录:
- c.数据分析报告;
- d. 故障分析报告;
- e. 可靠性保证措施报告;
- f. 试验结果总结报告;
- g. 建议措施报告;
- h. 可靠性增长报告。

12、计算实例

本章节主要描述了泵可靠性测定试验的计算实例。

组试验泵产品共五台,按试验结果,确定其平均寿命。试验数据如表%

	故 ft 时的	故障号	4.1	相邻两次故障间的	
I号	总运行时间 r h	分号	总号	支行时间^ h	
1	634	1	3	634	
	1054	2	7	420	
	1796	3	10	7*12	
	2492	4	15	696	
	OL = 3939	5	19	1447	
2	551	1	2	551	
	765	2	4	214	
	2148	3	14	1384	
	OL = 2512	4	16	364	
3	512	L	1	512	
	1022	2	6	510	
	3014	3	17	1992	
	OL = 4155	4	20	1141	
4	1126	1	S	1126	
	1672	2	9	546	
	OL=2121	3	13	449	
5	856	1	5	856	
	1907	2	11	1051	
	2032	3	12	125	
	OL = 3023	4	18	991	

按第 11 章所列相关公式计算被试泵的 MTBF 和 MOU 试验泵的台数《 =5;总故障数 r=20; 累积相关试验时间 T=15750 ha 确定无故障工作时间的分布 a 按式(10)计算平均无故障工作时间的观测值:

$$\overline{\text{MTBF}} = \frac{\sum_{i=1}^{r} t_i}{r} = \frac{15750}{20} = 788 \text{ h}$$

按式(12)计算无故障工作时间的试验均方根差:

$$S_{T} = \sqrt{\frac{\sum_{i=1}^{r} (t_{i} - \overline{\text{MTBF}})^{2}}{r - 1}} = \sqrt{\frac{\sum_{i=1}^{20} (t_{i} - 788)^{2}}{19}}$$

为计算列表 6 如下:

表 6

故障号r	ti-MTBF788	(才 i_788) ²
1	-276	76176
2	-237	56169
3	-154	23716
4	— 574	329476
5	68	4624
6	<u> 278</u>	77284
7	-368	135424
8	338	114244
9	-242	58564
10	46	2116
11	263	69169
12	-663	439569
13	-339	114921
14	595	354025
15	-92	8464
16	-424	179776
17	1204	1449616
18	203	41209
19	659	434281
20	353	124609

$$\sum_{i}^{20} (t_i - 788)^2 = 4093432 \text{ h}$$

$$S_T = \sqrt{\frac{4093432}{19}} = 464 \text{ h}$$

按式(14)计算试验变异数:

因为 pT>0.35,根据 11.4.2 条规定采用威尔布分布,按式(18)计算平均无故障工作时间 t。

$$\overline{\text{MTBF}} = K_b \sqrt[b]{\frac{r_3}{r} \sum_{i=1}^r t_i^b}$$

 r_3 由表 3 中选取,当 r=20 时, $r_3=0.85$ K_6 由表 4 选取或由图 2 查得,当 $r_4=0.589$ 时,b=1.75, $K_5=0.89$ 为计算列表 7 如下:

t	t{	t	ti ^{17s}	t	ti ^{17s}	t	
643	79430	551	62664	510	54733	449	43796
420	38966	214	11974	1992	593959	656	135466
742	105489	1383	313645	1141	224001	1051	194001
696	&4311	364	30334	1126	218873	125	4673
1447	339484	512	55109	546	61572	991	175037

$$\sum_{1}^{20} t_i^{1.75} = 2837617$$

$$\overline{MTBF} = 0.89 \sqrt[1.75]{\frac{0.85}{20} \times 2837617} = 713 \text{ h}$$

确定检修寿命的分布。

按式(11)计算平均检修寿命的观测值:

$$\overline{\text{MOL}} = \frac{\sum_{j=1}^{n} \text{OL}_{j}}{n} = \frac{15750}{5} = 3150 \text{ h}$$

按式(13) 计算维修寿命的试验均方根差:

$$S_{L} = \sqrt{\frac{\sum_{j=1}^{n} (OL_{j} - \overline{MOL})^{2}}{n-1}} = \sqrt{\frac{\sum_{j=1}^{5} (OL_{j} - 3150)^{2}}{4}}$$

为计算列表8如下

泵号《	OLj	OLj — 3150	$(OLj-3150)^2$
1	3939	789	622512
2	2512	-638	407044
3	41S5	1005	1010025
4	2121	1029	105S841
5	3023	-127	1629

按式(15)计算试验变异系数:

$$\nu_{\rm L} = \frac{S_{\rm L}}{MOL} = 882/3150 = 0.28$$

因为 ν₁ < 0.35,根据 11.4.2 条规定采用正态分布,按式(17)计算平均检修寿命:

$$\overline{\text{MOL}} = \overline{\text{MOL}} - \frac{t_a}{\sqrt{n}} \times S_L = 3150 - \frac{t_a}{\sqrt{n}} \times 882$$

$$n=5$$
 时由表 3 取 $\frac{t_a}{\sqrt{n}}=0.421$

 $MOL = 3150 - 0.421 \times 882 = 2780 \text{ h}$

记入技术文件时,MTBF 可圖整为800h, MOL 可圖整为2500。